Меню

Как настроить напряжение в генераторе

Напряжение генератора автомобиля, норма на холостом ходу и под нагрузкой

Из статьи вы узнаете какое напряжение генератора считается нормой на холостом ходу и под нагрузкой, как влияет данный параметр на срок службы аккумуляторной батареи.

Важные моменты

Напряжение (U) и емкость АКБ автомобиля — главные параметры, на которые необходимо уделять внимание при выборе и проверке источника питания.

Главным назначением аккумулятора является пуск двигателя в период, когда генератор машины еще не подключился к работе, а АКБ является единственным источником питания.

Чтобы исключить проблемы в эксплуатации, автовладелец должен знать следующие моменты:

  • От чего зависит ресурс аккумуляторной батареи;
  • Каким должно быть напряжение (в обычном режиме, после пуска двигателя и под нагрузкой);
  • Чем вызвано снижение емкости в холодное время года и прочие моменты.

Рассмотрим эти вопросы подробно.

От чего зависит срок годности АКБ?

Каждый производитель после изготовления батареи устанавливает гарантийный срок ее эксплуатации.

Кроме этого параметра, существует и фактический период, зависящий от многих факторов — своевременности обслуживания, соблюдения правил эксплуатации, состояния электропроводки и прочих моментов.

Из-за того, что условия обслуживания АКБ отличаются, различается и срок годности изделия.

У автовладельцев, которые эксплуатируют машину только в теплое время года, аккумулятор живет дольше всего. Другое дело, когда автомобиль нужен круглый год, вне зависимости от температуры на улице.

В такой ситуации срок годности АКБ снижается. Это вызвано и тем, что во втором случае водитель может накатать больший километраж.

Также на ресурс аккумулятора влияет:

  • Исправность и правильность работы генератора и регулятора напряжения.
  • Подключение к электропроводке автомобиля дополнительного оборудования, имеющего большой номинальный ток.
  • Режим эксплуатации. Меньше всего «живут» аккумуляторные батареи на такси, которые прохаживают большой километраж в течение года. Кроме того, такие автомобили работают в режиме частого пуска двигателя, что создает нагрузку на АКБ и генератор. При активном применении транспортного средства срок службы источника питания не превышает 1,5 лет.

При обычном режиме эксплуатации, когда автовладелец регулярно проверяет аккумулятор и проводит ТО, ресурс батареи составляет 4-5 лет при общем пробеге за этот период в 60-80 тысяч километров.

Чтобы избежать проблем, желательно периодически проверять напряжение генератора и аккумулятора.

Но упомянутый срок службы не наивысший, ведь при аккуратном обслуживании АКБ может проработать до восьми лет.

Но стоит знать, что рано или поздно замена аккумулятора потребуется, ведь с момента начала эксплуатации рабочие пластины постепенно изнашиваются. Чем больше циклов заряда и разрядки проходит батарея, тем быстрее она выходит из строя.

Практика показывает, что ключевую роль играет генератор, его исправность и текущее напряжение. Вот почему этому аспекту необходимо уделять ключевое внимание.

Какое напряжение генератора считается нормой?

Чтобы проверить напряжение генератора, необходимо завести мотор и отключить всю нагрузку. В этом случае мультиметр должен показывать 14.3 -15,5 Вольт (смотрите видео в конце статьи). Допускается отклонение на 0,1 Вольта в одну и другую сторону.

После этого необходимо поочередно подключать потребителей и проверять напряжение генератора.

Источник



Как добиться качественного электричества от генератора

В статье рассматривается один из возможных вариантов решения проблемы с не очень качественным напряжением, вырабатываемым многими бытовыми генераторами.

Многие, кто сталкивался с вынужденной необходимостью во время отключения электроэнергии пользоваться бензо- или дизельгенераторами, наверняка обратили внимание на то, что некоторые приборы не работают от электричества, вырабатываемого генератором.

Нам на сайт пришло письмо от нашего постоянного читателя, вот цитата из этого письма: …….«Бытовые генераторы в основном являются щеточными, поэтому качество выработываемого электричества, мягко говоря, не соответствует питаемым приборам. В частности компьютерная УПСка, при переходе на автономное питание начинает «ругаться». Есть ли какие — либо фильтры, приводящие синусойду в более удобоваримое состояние?»»……

Как говорил один умный человек, правильно заданный вопрос содержит половину правильного ответа. Для того чтобы понять причину необходимо немного разобраться в устройстве генератора, как он работает, где его слабое место, почему электричество вырабатываемого генератором, не «видят» некоторые устройства.

Дело в том, что многие электроприборы особенно чувствительны к качеству подаваемого электричества, если быть точным, они, приборы, чувствительны к качеству синусоиды. Если электричество, подаваемое из сети относительно стабильно, то об электричестве, получаемом от генератора, к сожалению, этого не скажешь. Особенно это касается бюджетных генераторов.

Во многом качество напряжения на выходе, зависит от оборотов генератора. Практически все современные генераторы комплектуются автоматическим регулятором напряжения. Но дело в том, что это устройство способно регулировать и поддерживать только напряжение на необходимом уровне, но оно не способно регулировать и выдавать чистую синусоиду. Более дорогие модели генераторов уже снабжаются электроникой, контролирующей качество выходного напряжения.

Читайте также:  Как настроить гостевой доступ в яндекс метрике

Особенно чувствительны к некачественному электричеству некоторые виды котлов отопления, практически все источники бесперебойного питания (UPS) компьютеров.

Связано это с тем, что в данных приборах, контроль за качеством подаваемого электричества следит микропроцессор. Вот он то, как раз и «ругается», на некачественную электроэнергию. Для многих приборов большое значение имеет не только стабильное напряжение, но еще и форма синусоиды. К сожалению, большинство бытовых генераторов не способны выдавать электроэнергию необходимого качества, с правильной синусоидой, без каких либо «шумов» и гармоник.

Для того, чтобы приборы которым необходимо качественное напряжение, нормально и полноценно функционировали и не выпадали в аварию, существуют стабилизаторы напряжения двойного преобразования. Напряжение и форма синусоиды на выходе прибора не зависит от напряжения, формы синусоиды, шумов в сети и т.д. На выходе прибора всегда ПРАВИЛЬНАЯ синусоида и СТАБИЛЬНОЕ напряжение.

Принцип работы данного девайса основан на двойном преобразовании входного напряжение. Если описать принцип работы прибора просто, не вдаваясь в дебри электроники, то в этом приборе присутствуют два преобразователя, две ступени. На первом этапе, входное напряжение выпрямляется в постоянное, на втором этапе- постоянное напряжение преобразовывается в переменное напряжение.

Контроль над работой прибора осуществляет микропроцессор, который мгновенно реагирует на любое изменение параметров, как на входе, так и на выходе прибора. Таким образом, достигается напряжение с чистой синусоидой, без каких либо «шумов», к которым так чувствительны UPS компьютеров, электронная часть «умных» котлов.

Стоят такие приборы относительно недорого. К примеру, стабилизатор напряжения, рассчитанный на мощность приборов до 500 Вт, стоит порядка 150-200 $. Производят такие приборы на небольших предприятиях, ограниченными партиями. Импортных аналогов данного прибора на нашем рынке пока что не наблюдаем.

Источник

БЛОГ ЭЛЕКТРОМЕХАНИКА

Студенческий блог для электромеханика. Обучение и практика, новости науки и техники. В помощь студентам и специалистам

26.09.2014

Автоматические регуляторы напряжения генераторов

Одним из наиболее важных условий, обеспечивающих правильную работу электрических установок, является постоянство напряжения питающих генераторов.

В установках постоянного тока достаточная степень постоянства напряжения обеспечивается компаундными генераторами. В установках переменного тока для сохранения постоянства напряжения приходится прибегать к автоматическим регуляторам напряжения.

На рис. 1 изображена принципиальная схема включения угольного автоматического регулятора напряжения. В состав схемы входят: угольный реостат 1, электромагнит с двумя обмотками 2 и 3 и пружина 5, создающая усилие, противодействующее электромагниту.

Обмотка 2 электромагнита включена на напряжение генератора Г между фазами А и С через выпрямитель 6.

Обмотка 3 электромагнита включена на вторичную обмотку трансформатора 4, первичная обмотка которого питается от возбудителя генератора В.

При нормальном напряжении генератора втягивающая сила электромагнита уравновешивается силой натяжения пружины. С повышением напряжения генератора сила электромагнита преодолевает натяжение пружины, якорь притягивается к сердечнику электромагнита, и поворачиваясь вокруг своей неподвижной оси, через вертикальный стержень передает растягивающее усилие на угольный столбик.

Сила натяжения на угольные шайбы уменьшается, сопротивление столбика возрастает, напряжение возбудителя уменьшается, в связи с чем уменьшается и напряжение генератора Г.

С уменьшением напряжения генератора Г втягивающая сила электромагнита уменьшается, под действием натяжения пружины якорь поворачивается и увеличивается сжатие угольного реостата.

Сопротивление реостата уменьшается, ток возбуждения увеличивается и напряжение генератора возрастает.

Если бы на электромагните была только обмотка 2, описанный процесс регулирования никогда бы не прекращался и напряжение генератора, изменившись один раз под действием какой-либо внешней причины, в дальнейшем колебалось бы под влиянием работы регулятора вокруг своего номинального значения.

Назначение обмотки 3 — сделать эти колебания затухающими и прекратить их после нескольких циклов с уменьшающейся амплитудой.

Магнитный поток обмотки 3 направлен навстречу потоку обмотки 2 и ослабляет действие обмотки 2 по мере подхода напряжения к номинальному значению, чем способствует быстрейшему прекращению колебаний напряжения.

Сопротивление 1C в цепи питания выпрямителя 6 служит для изменения пределов регулирования. Обычно его выбирают так, чтобы регулятор поддерживал напряжение в пределах от 95 до 105% номинального.

Назначение сопротивления 2С, питаемого от трансформатора тока ТТ, включенного в третью фазу, — создавать на своих зажимах падение напряжения. Падение напряжения на зажимах сопротивления 2С, складываясь геометрически с напряжением между фазами А и С, изменяет выходное напряжение выпрямителя в зависимости от реактивной нагрузки генератора. Это обусловливает постоянное распределение реактивной нагрузки между генераторами при их параллельной работе.

Читайте также:  Часы mebus как настроить

При работе одиночного генератора это устройство (так называемый компенсатор реактивной мощности) следует исключать из схемы регулятора, так как его наличие вызывает увеличение провала напряжения при пуске мощных асинхронных двигателей.

Изменяя величину сопротивления 3С, можно усилить или ослабить действие обмотки 3, т. е. в конечном итоге изменить время, в течение которого генератор достигает номинального напряжения.

Угольные регуляторы имеют ряд недостатков. Одним из наиболее существенных является малый срок службы угольных реостатов. В процессе эксплуатации угольные шайбы, из которых набирается реостат, «стареют», происходит их усадка и износ. Вследствие неравномерности этого явления равенство электрических сопротивлений отдельных угольных столбов нарушается, ток в столбах, имеющих минимальное сопротивление, увеличивается выше допустимого. При этом отдельные шайбы перегреваются, становятся хрупкими и при переменном сжатии их или вследствие вибрации и тряски судна дают трещины или рассыпаются. Иногда часть столба, работающего с перегрузкой, полностью выгорает.

Кроме того, угольным регуляторам свойственна небольшая скорость действия из-за наличия подвижных частей, имеющих определенную инерцию.

Более совершенным методом регулирования напряжения синхронных генераторов является компаундирование возбуждения.

На рис. 2 изображена принципиальная схема компаундирования возбудителя синхронного генератора. Возбудитель В генератора Г, кроме основной обмотки возбуждения ООВ, имеет дополнительную ДОВ. Дополнительная обмотка возбуждения питается током, пропорциональным току нагрузки генератора, получаемому от трансформатора тока ТТ через разделительный трансформатор напряжения РТ и выпрямитель В.

С увеличением тока нагрузки напряжение генератора Г падает. Одновременно увеличивается ток возбуждения в обмотке ДОВ возбудителя, его напряжение возрастает, ток возбуждения генератора Г усиливается и напряжение генератора поднимается.

Схема компаундирования регулируется таким образом, чтобы напряжение генератора сохранялось постоянным при изменении нагрузки от холостого хода до номинальной. Однако напряжение синхронных генераторов, кроме тока нагрузки, зависит также и от коэффициента мощности последней. Чтобы избежать влияние изменяющегося коэффициента мощности, в схему компаундирования вводят электромагнитный корректор.

Наилучшие результаты в части поддержания постоянства напряжения дают синхронные генераторы с самовозбуждением и саморегулированием напряжения.

На рис. 3 дана принципиальная схема системы самовозбуждения и саморегулирования синхронного генератора.

Существенной частью этой системы является специальный трехобмоточный трансформатор Т. Обмотка I (обмотка напряжения) этого трансформатора подключена к клеммам статора генератора и в ней течет ток Iн, пропорциональный напряжению генератора: Iн = K1U. Действие этой обмотки аналогично действию параллельной обмотки возбуждения генераторов постоянного тока со смешанным возбуждением.

Обмотка II (токовая) включена на трансформатор тока главной цепи генератора, через нее проходит ток Iт = K2I, пропорциональный току нагрузки генератора. Назначение этой обмотки аналогично назначению последовательной обмотки генератора со смешанным возбуждением.

Обмотка III является вторичной обмоткой трансформатора, ток в ней Iв равен геометрической сумме токов Iн и Iт. Этот ток, выпрямленный полупроводниковым выпрямителем В, питает обмотку возбуждения генератора ОВ.

Рассмотрим, как работает эта система. При вращении ротора генератора вследствие наличия в стали ротора остаточного магнетизма, генератор разовьет некоторую начальную э. д. с. При этом через обмотку I трансформатора Т пройдет ток. Образовавшееся в сердечнике трансформатора магнитное поле индуктирует вторичную э. д. с. в обмотке III и в ее цепи, а следовательно, и в обмотке ротора генератора потечет ток. Ток ротора усилит магнитное поле генератора, э. д. с. последнего возрастет, что в свою очередь вызовет увеличение тока в обмотке I трансформатора. Этот процесс продолжается до тех пор, пока напряжение на клеммах генератора достигнет номинальной величины. В дальнейшем, при холостом ходе генератора и при сохранении неизменной скорости его вращения, напряжение генератора будет сохраняться постоянным.

Если в статорной обмотке генератора появится ток нагрузки, то он создаст магнитный поток реакции якоря, который ослабит магнитный поток ротора, вследствие чего напряжение на клеммах генератора должно было бы уменьшиться. Однако этому будет противодействовать обмотка II трансформатора. При появлении в ней тока, пропорционального току нагрузки, магнитный поток, создаваемый этим током в сердечнике трансформатора, вызовет увеличение э. д. с. вторичной обмотки и тем самым увеличение тока в обмотке возбуждения генератора. Напряжение на клеммах последнего возрастет до прежней величины.

Таким образом, принцип действия синхронного генератора с самовозбуждением и саморегулированием напряжения подобен принципу действия генератора смешанного возбуждения постоянного тока.

Однако следует учесть, что напряжение, развиваемое синхронным генератором, зависит не только от его нагрузки, но и от величины коэффициента мощности. При уменьшении коэффициента мощности, т, е. при возрастании угла ψ, напряжение генератора уменьшается и для его восстановления до прежней величины необходимо увеличить ток возбуждения.

Читайте также:  Смарт часы модель f8 как настроить время

Для того чтобы получить увеличение тока возбуждения, пропорциональное увеличению угла ψ, обмотку напряжения трансформатора Т подключают к клеммам генератора не непосредственно, а через дроссель Д. Величина индуктивного сопротивления дросселя выбирается такой, чтобы угол сдвига фаз между напряжением генератора и током в обмотке I трансформатора был бы равен почти 90°.

В этом случае диаграмма геометрического сложения токов в обмотках трансформатора Т будет иметь вид, изображенный на рис. 4.

Легко убедиться, что при увеличении угла ψ1 до величины ψ2 результирующий ток возбуждения генератора также возрастает, как это показано на рис. 4, а пунктиром.
Если бы фаза тока в обмотке I трансформатора Т совпадала бы с фазой напряжения генератора (как это изображено на рис. 4, б), то в этом случае, при увеличении угла ψ, величина результирующего тока возбуждения будет уменьшаться.

Уместно отметить еще одну особенность синхронных генераторов описываемой системы по сравнению с генераторами, получающими возбуждение от машинного возбудителя и оборудованными автоматическими регуляторами напряжения.

У генераторов с возбудителем и автоматическим регулятором напряжения неизбежно имеет место некоторое запаздывание восстановления напряжения.

Это запаздывание объясняется следующими причинами.

1. Автоматический регулятор начинает действовать только после того, как на регулятор поступит уже изменившееся напряжение.
2. После поступления на регулятор сигнала об изменении напряжения необходимо некоторое время на срабатывание самого регулятора.
3. Возбудитель генератора вследствие наличия у него электромагнитной инерции изменяет свое напряжение, а следовательно, и напряжение генератора с некоторым замедлением.

У синхронных генераторов с самовозбуждением процесс регулирования напряжения начинается не после изменения напряжения, а одновременно с изменением тока статора, которое должно вызвать изменение напряжения.

Вследствие этой особенности системы как абсолютное значение величины изменения напряжения генератора при резких колебаниях его нагрузки, так и время восстановления напряжения значительно меньше, чем у генераторов с возбудителем и автоматическим регулятором напряжения.

Иногда в схемах самовозбуждения, для облегчения начала процесса самовозбуждения, предусматривают установку конденсаторов, включаемых в цепь дросселя, как указано на рис. 3 пунктиром. Емкость конденсаторов подбирается так, чтобы в их цепи возник резонанс напряжения, тогда начальное напряжение на обмотке III трансформатора Т резко возрастает и генератор уверенно возбуждается. Кроме установки конденсаторов, для тех же целей применяются и другие методы.

В качестве примера конкретных генераторов, выпускаемых промышленностью рассмотрим схему самовозбуждения и саморегулирования отечественных синхронных генераторов серии МСС (рис. 5).

У этих генераторов, так же как и в описанной выше принципиальной схеме, применен трансформатор с тремя обмотками: напряжения I, токовой II и результирующей III. Необходимый сдвиг фазы тока в обмотке I относительно напряжения генератора осуществляется с помощью магнитного шунта, находящегося в трансформаторе, вследствие чего отпадает необходимость в отдельном дросселе. Новым элементом в этой схеме является дроссель Д. Этот дроссель служит для подрегулировки вручную напряжения генератора в пределах ±5% от номинального напряжения. На дросселе, помимо основных обмоток, помещены две дополнительные а и б. Обмотка а питается постоянным током от выпрямителя В3, подключенного к обмотке напряжения трансформатора Т.

С помощью регулировочного реостата Р1 можно менять величину тока в обмотке а. Изменение тока в этой обмотке вызывает изменение магнитного потока в сердечнике дросселя и, как следствие изменение его реактивного сопротивления. При изменении тока в дросселе одновременно изменяется ток, поступающий на выпрямитель B1, а следовательно, и ток возбуждения генератора.

Обмотка б используется при параллельной работе генераторов с разной мощностью, а также для поддержания постоянства напряжения генератора при колебании его частоты.

Для обеспечения начального самовозбуждения у генераторов серии МСС предусмотрен небольшой встроенный, вспомогательный генератор переменного тока с постоянными магнитами. Этот генератор включен на обмотку возбуждения главного генератора через свой выпрямитель В2. Начальный ток возбуждения обмотки ротора генератора получают через этот выпрямитель. В дальнейшем, когда вступит в действие основной выпрямитель B1, вспомогательный генератор возбуждения автоматически исключается из схемы, так как его выпрямитель В2 окажется запертым более высоким напряжением выпрямителя B1.

Элементы системы самовозбуждения и саморегулирования генераторов серии МСС выполняются в виде самостоятельных блоков размещаемых отдельно от генератора.

Следует отметить, что возможно создать очень большое число различных систем самовозбуждения и саморегулирования, отличающихся по числу, типу и способу включения входящих в них элементов. Почти каждая зарубежная фирма выпускает синхронные генераторы со своей системой самовозбуждения и саморегулирования. Изложенные в настоящей статье общие принципы помогут разобраться в особенностях различных систем, могущих встретиться на морских судах.

Источник

Adblock
detector